Copied to
clipboard

?

G = C42.99D10order 320 = 26·5

99th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.99D10, C10.542- (1+4), C10.992+ (1+4), (C4×D20)⋊11C2, C202Q88C2, C4⋊C4.274D10, D10⋊Q86C2, C4.D205C2, (C4×Dic10)⋊12C2, C207D4.18C2, C42⋊C218D5, (C2×C10).78C24, (C4×C20).29C22, D10.12D45C2, C20.236(C4○D4), C4.120(C4○D20), C20.48D442C2, (C2×C20).151C23, C22⋊C4.102D10, Dic5.5D45C2, (C22×C4).199D10, C4⋊Dic5.36C22, C2.11(D48D10), C23.89(C22×D5), C23.D5.6C22, (C2×D20).216C22, D10⋊C4.4C22, (C2×Dic5).31C23, (C22×D5).26C23, C22.107(C23×D5), (C22×C10).148C23, (C22×C20).308C22, C51(C22.36C24), (C4×Dic5).220C22, C10.D4.75C22, C2.12(D4.10D10), (C2×Dic10).241C22, C4⋊C4⋊D56C2, C2.37(C2×C4○D20), C10.34(C2×C4○D4), (C2×C4×D5).246C22, (C5×C42⋊C2)⋊20C2, (C5×C4⋊C4).314C22, (C2×C4).151(C22×D5), (C2×C5⋊D4).11C22, (C5×C22⋊C4).117C22, SmallGroup(320,1206)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.99D10
C1C5C10C2×C10C22×D5C2×D20C4×D20 — C42.99D10
C5C2×C10 — C42.99D10

Subgroups: 782 in 216 conjugacy classes, 95 normal (51 characteristic)
C1, C2 [×3], C2 [×3], C4 [×2], C4 [×11], C22, C22 [×9], C5, C2×C4 [×6], C2×C4 [×10], D4 [×4], Q8 [×4], C23, C23 [×2], D5 [×2], C10 [×3], C10, C42 [×2], C42 [×2], C22⋊C4 [×2], C22⋊C4 [×10], C4⋊C4 [×2], C4⋊C4 [×8], C22×C4, C22×C4 [×2], C2×D4 [×3], C2×Q8 [×3], Dic5 [×6], C20 [×2], C20 [×5], D10 [×6], C2×C10, C2×C10 [×3], C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8 [×3], C22.D4 [×2], C4.4D4 [×3], C422C2 [×2], C4⋊Q8, Dic10 [×4], C4×D5 [×2], D20 [×2], C2×Dic5 [×6], C5⋊D4 [×2], C2×C20 [×6], C2×C20 [×2], C22×D5 [×2], C22×C10, C22.36C24, C4×Dic5 [×2], C10.D4 [×4], C4⋊Dic5 [×2], C4⋊Dic5 [×2], D10⋊C4 [×8], C23.D5 [×2], C4×C20 [×2], C5×C22⋊C4 [×2], C5×C4⋊C4 [×2], C2×Dic10, C2×Dic10 [×2], C2×C4×D5 [×2], C2×D20, C2×C5⋊D4 [×2], C22×C20, C4×Dic10, C202Q8, C4×D20, C4.D20, D10.12D4 [×2], Dic5.5D4 [×2], D10⋊Q8 [×2], C4⋊C4⋊D5 [×2], C20.48D4, C207D4, C5×C42⋊C2, C42.99D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4), 2- (1+4), C22×D5 [×7], C22.36C24, C4○D20 [×2], C23×D5, C2×C4○D20, D48D10, D4.10D10, C42.99D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=1, d2=b2, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=a2b, dcd-1=b2c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 113 33 98)(2 114 34 99)(3 115 35 100)(4 116 36 91)(5 117 37 92)(6 118 38 93)(7 119 39 94)(8 120 40 95)(9 111 31 96)(10 112 32 97)(11 128 48 109)(12 129 49 110)(13 130 50 101)(14 121 41 102)(15 122 42 103)(16 123 43 104)(17 124 44 105)(18 125 45 106)(19 126 46 107)(20 127 47 108)(21 85 135 55)(22 86 136 56)(23 87 137 57)(24 88 138 58)(25 89 139 59)(26 90 140 60)(27 81 131 51)(28 82 132 52)(29 83 133 53)(30 84 134 54)(61 156 76 141)(62 157 77 142)(63 158 78 143)(64 159 79 144)(65 160 80 145)(66 151 71 146)(67 152 72 147)(68 153 73 148)(69 154 74 149)(70 155 75 150)
(1 90 18 73)(2 51 19 69)(3 82 20 75)(4 53 11 61)(5 84 12 77)(6 55 13 63)(7 86 14 79)(8 57 15 65)(9 88 16 71)(10 59 17 67)(21 130 158 118)(22 102 159 94)(23 122 160 120)(24 104 151 96)(25 124 152 112)(26 106 153 98)(27 126 154 114)(28 108 155 100)(29 128 156 116)(30 110 157 92)(31 58 43 66)(32 89 44 72)(33 60 45 68)(34 81 46 74)(35 52 47 70)(36 83 48 76)(37 54 49 62)(38 85 50 78)(39 56 41 64)(40 87 42 80)(91 133 109 141)(93 135 101 143)(95 137 103 145)(97 139 105 147)(99 131 107 149)(111 138 123 146)(113 140 125 148)(115 132 127 150)(117 134 129 142)(119 136 121 144)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 18 17)(2 16 19 9)(3 8 20 15)(4 14 11 7)(5 6 12 13)(21 142 158 134)(22 133 159 141)(23 150 160 132)(24 131 151 149)(25 148 152 140)(26 139 153 147)(27 146 154 138)(28 137 155 145)(29 144 156 136)(30 135 157 143)(31 34 43 46)(32 45 44 33)(35 40 47 42)(36 41 48 39)(37 38 49 50)(51 66 69 58)(52 57 70 65)(53 64 61 56)(54 55 62 63)(59 68 67 60)(71 74 88 81)(72 90 89 73)(75 80 82 87)(76 86 83 79)(77 78 84 85)(91 121 109 119)(92 118 110 130)(93 129 101 117)(94 116 102 128)(95 127 103 115)(96 114 104 126)(97 125 105 113)(98 112 106 124)(99 123 107 111)(100 120 108 122)

G:=sub<Sym(160)| (1,113,33,98)(2,114,34,99)(3,115,35,100)(4,116,36,91)(5,117,37,92)(6,118,38,93)(7,119,39,94)(8,120,40,95)(9,111,31,96)(10,112,32,97)(11,128,48,109)(12,129,49,110)(13,130,50,101)(14,121,41,102)(15,122,42,103)(16,123,43,104)(17,124,44,105)(18,125,45,106)(19,126,46,107)(20,127,47,108)(21,85,135,55)(22,86,136,56)(23,87,137,57)(24,88,138,58)(25,89,139,59)(26,90,140,60)(27,81,131,51)(28,82,132,52)(29,83,133,53)(30,84,134,54)(61,156,76,141)(62,157,77,142)(63,158,78,143)(64,159,79,144)(65,160,80,145)(66,151,71,146)(67,152,72,147)(68,153,73,148)(69,154,74,149)(70,155,75,150), (1,90,18,73)(2,51,19,69)(3,82,20,75)(4,53,11,61)(5,84,12,77)(6,55,13,63)(7,86,14,79)(8,57,15,65)(9,88,16,71)(10,59,17,67)(21,130,158,118)(22,102,159,94)(23,122,160,120)(24,104,151,96)(25,124,152,112)(26,106,153,98)(27,126,154,114)(28,108,155,100)(29,128,156,116)(30,110,157,92)(31,58,43,66)(32,89,44,72)(33,60,45,68)(34,81,46,74)(35,52,47,70)(36,83,48,76)(37,54,49,62)(38,85,50,78)(39,56,41,64)(40,87,42,80)(91,133,109,141)(93,135,101,143)(95,137,103,145)(97,139,105,147)(99,131,107,149)(111,138,123,146)(113,140,125,148)(115,132,127,150)(117,134,129,142)(119,136,121,144), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,18,17)(2,16,19,9)(3,8,20,15)(4,14,11,7)(5,6,12,13)(21,142,158,134)(22,133,159,141)(23,150,160,132)(24,131,151,149)(25,148,152,140)(26,139,153,147)(27,146,154,138)(28,137,155,145)(29,144,156,136)(30,135,157,143)(31,34,43,46)(32,45,44,33)(35,40,47,42)(36,41,48,39)(37,38,49,50)(51,66,69,58)(52,57,70,65)(53,64,61,56)(54,55,62,63)(59,68,67,60)(71,74,88,81)(72,90,89,73)(75,80,82,87)(76,86,83,79)(77,78,84,85)(91,121,109,119)(92,118,110,130)(93,129,101,117)(94,116,102,128)(95,127,103,115)(96,114,104,126)(97,125,105,113)(98,112,106,124)(99,123,107,111)(100,120,108,122)>;

G:=Group( (1,113,33,98)(2,114,34,99)(3,115,35,100)(4,116,36,91)(5,117,37,92)(6,118,38,93)(7,119,39,94)(8,120,40,95)(9,111,31,96)(10,112,32,97)(11,128,48,109)(12,129,49,110)(13,130,50,101)(14,121,41,102)(15,122,42,103)(16,123,43,104)(17,124,44,105)(18,125,45,106)(19,126,46,107)(20,127,47,108)(21,85,135,55)(22,86,136,56)(23,87,137,57)(24,88,138,58)(25,89,139,59)(26,90,140,60)(27,81,131,51)(28,82,132,52)(29,83,133,53)(30,84,134,54)(61,156,76,141)(62,157,77,142)(63,158,78,143)(64,159,79,144)(65,160,80,145)(66,151,71,146)(67,152,72,147)(68,153,73,148)(69,154,74,149)(70,155,75,150), (1,90,18,73)(2,51,19,69)(3,82,20,75)(4,53,11,61)(5,84,12,77)(6,55,13,63)(7,86,14,79)(8,57,15,65)(9,88,16,71)(10,59,17,67)(21,130,158,118)(22,102,159,94)(23,122,160,120)(24,104,151,96)(25,124,152,112)(26,106,153,98)(27,126,154,114)(28,108,155,100)(29,128,156,116)(30,110,157,92)(31,58,43,66)(32,89,44,72)(33,60,45,68)(34,81,46,74)(35,52,47,70)(36,83,48,76)(37,54,49,62)(38,85,50,78)(39,56,41,64)(40,87,42,80)(91,133,109,141)(93,135,101,143)(95,137,103,145)(97,139,105,147)(99,131,107,149)(111,138,123,146)(113,140,125,148)(115,132,127,150)(117,134,129,142)(119,136,121,144), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,18,17)(2,16,19,9)(3,8,20,15)(4,14,11,7)(5,6,12,13)(21,142,158,134)(22,133,159,141)(23,150,160,132)(24,131,151,149)(25,148,152,140)(26,139,153,147)(27,146,154,138)(28,137,155,145)(29,144,156,136)(30,135,157,143)(31,34,43,46)(32,45,44,33)(35,40,47,42)(36,41,48,39)(37,38,49,50)(51,66,69,58)(52,57,70,65)(53,64,61,56)(54,55,62,63)(59,68,67,60)(71,74,88,81)(72,90,89,73)(75,80,82,87)(76,86,83,79)(77,78,84,85)(91,121,109,119)(92,118,110,130)(93,129,101,117)(94,116,102,128)(95,127,103,115)(96,114,104,126)(97,125,105,113)(98,112,106,124)(99,123,107,111)(100,120,108,122) );

G=PermutationGroup([(1,113,33,98),(2,114,34,99),(3,115,35,100),(4,116,36,91),(5,117,37,92),(6,118,38,93),(7,119,39,94),(8,120,40,95),(9,111,31,96),(10,112,32,97),(11,128,48,109),(12,129,49,110),(13,130,50,101),(14,121,41,102),(15,122,42,103),(16,123,43,104),(17,124,44,105),(18,125,45,106),(19,126,46,107),(20,127,47,108),(21,85,135,55),(22,86,136,56),(23,87,137,57),(24,88,138,58),(25,89,139,59),(26,90,140,60),(27,81,131,51),(28,82,132,52),(29,83,133,53),(30,84,134,54),(61,156,76,141),(62,157,77,142),(63,158,78,143),(64,159,79,144),(65,160,80,145),(66,151,71,146),(67,152,72,147),(68,153,73,148),(69,154,74,149),(70,155,75,150)], [(1,90,18,73),(2,51,19,69),(3,82,20,75),(4,53,11,61),(5,84,12,77),(6,55,13,63),(7,86,14,79),(8,57,15,65),(9,88,16,71),(10,59,17,67),(21,130,158,118),(22,102,159,94),(23,122,160,120),(24,104,151,96),(25,124,152,112),(26,106,153,98),(27,126,154,114),(28,108,155,100),(29,128,156,116),(30,110,157,92),(31,58,43,66),(32,89,44,72),(33,60,45,68),(34,81,46,74),(35,52,47,70),(36,83,48,76),(37,54,49,62),(38,85,50,78),(39,56,41,64),(40,87,42,80),(91,133,109,141),(93,135,101,143),(95,137,103,145),(97,139,105,147),(99,131,107,149),(111,138,123,146),(113,140,125,148),(115,132,127,150),(117,134,129,142),(119,136,121,144)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,18,17),(2,16,19,9),(3,8,20,15),(4,14,11,7),(5,6,12,13),(21,142,158,134),(22,133,159,141),(23,150,160,132),(24,131,151,149),(25,148,152,140),(26,139,153,147),(27,146,154,138),(28,137,155,145),(29,144,156,136),(30,135,157,143),(31,34,43,46),(32,45,44,33),(35,40,47,42),(36,41,48,39),(37,38,49,50),(51,66,69,58),(52,57,70,65),(53,64,61,56),(54,55,62,63),(59,68,67,60),(71,74,88,81),(72,90,89,73),(75,80,82,87),(76,86,83,79),(77,78,84,85),(91,121,109,119),(92,118,110,130),(93,129,101,117),(94,116,102,128),(95,127,103,115),(96,114,104,126),(97,125,105,113),(98,112,106,124),(99,123,107,111),(100,120,108,122)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
0030900
00321100
0000309
00003211
,
3200000
0320000
00140522
000141936
003619270
00225027
,
010000
100000
0000407
0000347
0040700
0034700
,
0400000
100000
0000400
0000341
001000
0074000

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,30,32,0,0,0,0,9,11,0,0,0,0,0,0,30,32,0,0,0,0,9,11],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,14,0,36,22,0,0,0,14,19,5,0,0,5,19,27,0,0,0,22,36,0,27],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,34,0,0,0,0,7,7,0,0,40,34,0,0,0,0,7,7,0,0],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,7,0,0,0,0,0,40,0,0,40,34,0,0,0,0,0,1,0,0] >;

62 conjugacy classes

class 1 2A2B2C2D2E2F4A···4F4G4H4I4J···4O5A5B10A···10F10G10H10I10J20A···20H20I···20AB
order12222224···44444···45510···101010101020···2020···20
size1111420202···244420···20222···244442···24···4

62 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D10D10C4○D202+ (1+4)2- (1+4)D48D10D4.10D10
kernelC42.99D10C4×Dic10C202Q8C4×D20C4.D20D10.12D4Dic5.5D4D10⋊Q8C4⋊C4⋊D5C20.48D4C207D4C5×C42⋊C2C42⋊C2C20C42C22⋊C4C4⋊C4C22×C4C4C10C10C2C2
# reps111112222111244442161144

In GAP, Magma, Sage, TeX

C_4^2._{99}D_{10}
% in TeX

G:=Group("C4^2.99D10");
// GroupNames label

G:=SmallGroup(320,1206);
// by ID

G=gap.SmallGroup(320,1206);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,232,100,675,297,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽